Neural network river forecasting with multi-objective fully informed particle swarm optimization

نویسندگان

  • Riccardo Taormina
  • Kwok-wing Chau
چکیده

In this work, we suggest that the poorer results obtained with particle swarm optimization (PSO) in some previous studies should be attributed to the cross-validation scheme commonly employed to improve generalization of PSO-trained neural network river forecasting (NNRF) models. Crossvalidation entails splitting the training dataset into two, and accepting particle position updates only if fitness improvements are concurrently measured on both subsets. The NNRF calibration process thus becomes a multi-objective (MO) optimization problem which is still addressed as a singleobjective one. In our opinion, PSO cross-validated training should be carried out under an MO optimization framework instead. Therefore, in this work, we introduce a novel MO variant of the swarm optimization algorithm to train NNRF models for the prediction of future streamflow discharges in the Shenandoah River watershed, Virginia (USA). The case study comprises over 9,000 observations of both streamflow and rainfall observations, spanning a period of almost 25 years. The newly introduced MO fully informed particle swarm (MOFIPS) optimization algorithm is found to provide better performing models with respect to those developed using the standard PSO, as well as advanced gradient-based optimization techniques. These findings encourage the use of an MO approach to NNRF cross-validated training with swarm optimization. doi: 10.2166/hydro.2014.116 Riccardo Taormina Kwok-wing Chau (corresponding author) Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing the Prediction Model of Stock Price in Pharmaceutical Companies Using Multiple Objective Particle Swarm Optimization Algorithm (MOPSO)

The purpose of this study is to optimize the stock price forecasting model with meta-innovation method in pharmaceutical companies.In this research, stock portfolio optimization has been done in two separate phases.The first phase is related to forecasting stock futures based on past stock information, which is forecasting the stock price using artificial neural network.The neural network used ...

متن کامل

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

A Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network

Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...

متن کامل

Swarm-intelligent Neural Network System (sinns) Based Multi-objective Optimization of Hard Turning

In this paper, particle swarm optimization, which is a recently developed evolutionary algorithm, is used to optimize machining parameters in hard turning processes where multiple conflicting objectives are present. The relationships between machining parameters and the performance measures of interest are obtained by using experimental data and swarm intelligent neural network systems (SINNS)....

متن کامل

Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015